Skip to contents

All functions

adv_clones
adv_clones
assign_benches()
assign clones to tissue culture benches
capture_location()
use purrr::imap to capture location of a trial from trial file ipurrr::map applies a function to each element of a vector and its index
check_gene_chars()
check length of accession family name - should be 9
check_geno()
get accession names that do not conform to required protocol
clean_clone_name()
Clean accession names
clean_dir_name()
clean file name using gsub
clean_dir_name_c()
clean file name using gsub
clean_file_names()
clean file names using gsub
clean_var_names()
clean variable names
combine_meta_files()
read meta-files from separate trials in a season into 1 file
compare_df()
Compare field experiment data to see if they share designs, variables, etc.
compute_cols()
Compute nmtp, mtwp (no/marketable tuber weight per plot)
convert_to_character()
Coerce columns to character
convert_to_factor()
Coerce columns to factors
convert_to_numeric()
onvert column values that numeric but read as character to numeric
create_family_vars()
create new family code per new naming convention
create_meta_file()
create a meta-data file with design factors, planting dates etc
create_pedigree()
create pedigree (ancestry)
create_td()
A wrapper for statgenSTA::createTD for a row-col design model fitting
drop_all_data()
drop dataframe objects from a list of dataframes
drop_empty_dfs()
drop from a list dataframes with no dimension or columns having all NA
drop_nas()
delete columns with all values missing(NA)
drop_null_dfs()
drop null dataframes from a list of dataframes
drop_sheets()
drop workbook sheets not of interest
drop_zeros()
delete columns with all values 0
duplicate_row()
duplicate a row
extract_blups()
extract BLUPs from a REML model
family_code
country_level_data
filter_geno()
Filter clone ids to rid of non-compliant formats
find_var()
find variables in df
fit_td()
A wrapper for statgenSTA::fitTD for REML analysis
format_accessions()
organize accessions to export
geno_by_tubers()
Distribute clones to match the available seeds during replication
gen_familycode()
a regular expr deleting everything after last fullstop(.) or last underscore(_)
gen_location()
generate possible location from file paths
gen_uniqueid()
generate unique ids
get_design_factors()
Get experimental design factors from a trial dataframe/fieldbook
get_fieldbooks()
get field trial fieldbooks in a particular folder
get_ontology_labels()
get ontology labels from {st4gi}
get_valid_columns()
get column names defined in ontology
`%nin%`
%nin% returns a logical vector if there is a match or not for left operand
ilri
ilri
join_by_keys()
Join predictor and heritability (h2) data objects to one dataframe
keep_geno()
drop dfs w/o geno column
keep_ttyna()
drop dfs without ttyna as a column
list_design_files()
List design files after designing trial experiments in R
list_files()
List file in a directory
merge_note_obs()
Merge notes & obs to one column
meta
adv_clones
my_left()
Extract first n elements of a string
my_right()
Extract last n elements of a string
names_df()
sort names in ascending order
pre_process_trials()
run a number of checks & transformations to pre-process a list of trial data
pre_process_trials_()
run a number of checks & transformations to pre-process a list of trial data
process_trials()
run a number of checks & transformations to pre-process a list of trial data
randomize_noRep()
randomize trials for multiplication without replication
randomize_res_row_col()
resolvable row column design: plots = row by col; test clones replicated once, checks more than once
randomize_row_col()
row column design: plots = row by col; equal rep for each treatment
rand_Prep()
Partially replicated field design
read_accessions()
read accession files that have been fixed and confirmed correct
read_workbooks()
A wrapper for readr's read_csv & readxl's read_excel for reading trial data
recode_var()
Coarce variable to numeric or character
rename_cols()
rename data columns to conform to ontology labels
run_checks()
run data quality checks using {st4gi} functions
run_data_processes()
compute derived phenotypic variables
select_cols()
A wrapper for dplyr::select function
split_by_chunk()
split a dataframe into a list by row numbe
subset_invalid_cols()
get invalid names (labels not in ontology) & add geno
sum_rowwise()
dplyr::rowwise sum target columns
trial_design_meta()
generate trial design inputs i.e., geno replications and blocking list
update_geno()
Update accession names to conform to naming convention
write_data()
write processed trial data to a directory
write_season_data()
Write out data for pre-processed experimental data by calling write_trials()
write_trials()
write out trial data