resolvable row column design: plots = row by col; test clones replicated once, checks more than once
Source:R/randomize_row_col.R
randomize_res_row_col.Rdresolvable row column design: plots = row by col; test clones replicated once, checks more than once
Arguments
- clones
a dataframe with
genocolumn- tot
integer. total number of unique clones/genotypes to be randomized to field
- trial
character. trial
- totReps
integer. total number of plots: row by col
- trtrepP
numeric vector. replications of
insgiven in the formrep(c(vector of reps), c(vector of number of clones))e.g.,rep(c(1,8), c(304, 4))- block_lst
a list specifying blocking of the field
- rowD
integer. number of rows in the field
- n_dummies
integer. number of dummies to complete a rectangular layout
- season
season of trial
- path
character specifying path to write the design
- check
a character vector of checks to fill rectangular grid
- dummy
a character vector of dummy checks to fill rectangular grid
- to_add
integer. number of checks to add to complete the rectangular grid
Examples
data("ilri")
dat <- ilri %>% dplyr::select(geno)
# dat %>% dplyr::pull()
rrc80 <- randomize_res_row_col(
clones = dat,
tot = 62,
trial = "KE24ILR-BW-ST01",
totReps = 80,
trtrepP = rep(c(1, 4, 3), c(55, 4, 3)),
block_lst = list(c(16,5), c(8,5)),
rowD = 16,
# rowsinR = 4,
# colsinR = 1,
n_dummies = 3,
season = "season-2025",
path = NULL
)
#> Warning: replacing previous import 'R.oo::throw' by 'R.methodsS3::throw' when loading 'DiGGer'
#> Phase, Search%, A-measure
#> [1] 1.000000 0.000000 1.321959
#> [1] 1.000000 10.000000 1.303753
#> [1] 1.000000 20.000000 1.303753
#> [1] 1.000000 30.000000 1.303753
#> [1] 1.000000 40.000000 1.303753
#> [1] 1.000000 50.000000 1.303753
#> [1] 1.000000 60.000000 1.303753
#> [1] 1.000000 70.000000 1.303753
#> [1] 1.000000 80.000000 1.303753
#> [1] 1.000000 90.000000 1.303753
#> [1] 1.000000 100.000000 1.303753
#> [1] 1.303753 1.303753 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
#> [9] 0.000000 0.000000
#> 8 rows by 5 columns
#> Phase, Search%, A-measure
#> [1] 2.00000 0.00000 1.99169
#> [1] 2.000000 10.000000 1.633634
#> [1] 2.000000 20.000000 1.632903
#> [1] 2.0000 30.0000 1.6315
#> [1] 2.0000 40.0000 1.6315
#> [1] 2.000000 50.000000 1.630169
#> [1] 2.000000 60.000000 1.630169
#> [1] 2.000000 70.000000 1.630169
#> [1] 2.000000 80.000000 1.630169
#> [1] 2.000000 90.000000 1.628684
#> [1] 2.000000 100.000000 1.628684
#> [1] 1.628684 1.628684 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
#> [9] 0.000000 0.000000
head(rrc80$fieldbook)
#> plot geno entry row column rep
#> 1 KE24ILR-BW-ST01-00001 CIP319027.006 20 1 1 1
#> 2 KE24ILR-BW-ST01-00002 CIP319020.003 7 2 1 1
#> 3 KE24ILR-BW-ST01-00003 CIP319040.004 25 3 1 1
#> 4 KE24ILR-BW-ST01-00004 dummy-Shangi 58 4 1 1
#> 5 KE24ILR-BW-ST01-00005 CIP319064.007 54 5 1 1
#> 6 KE24ILR-BW-ST01-00006 CIP319020.006 10 6 1 1