generate trial design inputs i.e., geno replications and blocking list
Source:R/rand_prep.R
trial_design_meta.Rd
generate trial design inputs i.e., geno replications and blocking list
Arguments
- trep
numeric vector of treatment/genotype replications
- trgroup
numeric vector of treatment group replication
- block_list
a list of blocking field layout
Examples
d <- tempdir()
data("ilri", package = "pbwrangler")
ins_ilri <- geno_by_tubers(ilri)
ilri_prep <- rand_Prep(
tot = 57,
ins = ins_ilri,
rowD = 12,
trial = "KE24ILR-BIO-IT01",
n_dummies = 5,
loc = "ilri",
totReps =96,
trtrepP = trial_design_meta()$trep,
trtgroup = trial_design_meta()$trgroup,
block_lst = trial_design_meta()$block_list,
path = NULL
)
#> Phase, Search%, A-measure
#> [1] 1.0000000 0.0000000 0.2718985
#> [1] 1.0000000 10.0000000 0.2666667
#> [1] 1.0000000 20.0000000 0.2666667
#> [1] 1.0000000 30.0000000 0.2666667
#> [1] 1.0000000 40.0000000 0.2666667
#> [1] 1.0000000 50.0000000 0.2666667
#> [1] 1.0000000 60.0000000 0.2666667
#> [1] 1.0000000 70.0000000 0.2666667
#> [1] 1.0000000 80.0000000 0.2666667
#> [1] 1.0000000 90.0000000 0.2666667
#> [1] 1.0000000 100.0000000 0.2666667
#> [1] 0.2666667 0.2666667 0.2666667 0.0000000 0.0000000 0.0000000 0.0000000
#> [8] 0.0000000 0.0000000 0.0000000
#> 8 rows by 2 columns
#> Phase, Search%, A-measure
#> [1] 2.0000000 0.0000000 0.2700262
#> [1] 2.0000000 10.0000000 0.2700262
#> [1] 2.0000000 20.0000000 0.2700262
#> [1] 2.0000000 30.0000000 0.2700262
#> [1] 2.0000000 40.0000000 0.2700262
#> [1] 2.0000000 50.0000000 0.2700262
#> [1] 2.0000000 60.0000000 0.2700262
#> [1] 2.0000000 70.0000000 0.2700262
#> [1] 2.0000000 80.0000000 0.2700262
#> [1] 2.0000000 90.0000000 0.2700262
#> [1] 2.0000000 100.0000000 0.2700262
#> [1] 0.2666667 0.2834646 0.2700262 0.0000000 0.0000000 0.0000000 0.0000000
#> [8] 0.0000000 0.0000000 0.0000000
#> Phase, Search%, A-measure
#> [1] 1.0000000 0.0000000 0.7591574
#> [1] 1.0000000 10.0000000 0.7437399
#> [1] 1.0000000 20.0000000 0.7437399
#> [1] 1.0000000 30.0000000 0.7437399
#> [1] 1.0000000 40.0000000 0.7437399
#> [1] 1.0000000 50.0000000 0.7437399
#> [1] 1.0000000 60.0000000 0.7437399
#> [1] 1.0000000 70.0000000 0.7437399
#> [1] 1.0000000 80.0000000 0.7437399
#> [1] 1.0000000 90.0000000 0.7437399
#> [1] 1.0000000 100.0000000 0.7437399
#> [1] 0.7390377 0.7625489 0.7437399 0.0000000 0.0000000 0.0000000 0.0000000
#> [8] 0.0000000 0.0000000 0.0000000
#> 8 rows by 2 columns
#> Phase, Search%, A-measure
#> [1] 2.0000000 0.0000000 0.7842118
#> [1] 2.0000000 10.0000000 0.7717472
#> [1] 2.0000000 20.0000000 0.7717472
#> [1] 2.0000000 30.0000000 0.7717472
#> [1] 2.0000000 40.0000000 0.7717472
#> [1] 2.0000000 50.0000000 0.7716664
#> [1] 2.0000000 60.0000000 0.7716664
#> [1] 2.0000000 70.0000000 0.7716664
#> [1] 2.0000000 80.0000000 0.7716664
#> [1] 2.0000000 90.0000000 0.7716664
#> [1] 2.0000000 100.0000000 0.7716664
#> [1] 0.7593699 0.8208523 0.7716664 0.0000000 0.0000000 0.0000000 0.0000000
#> [8] 0.0000000 0.0000000 0.0000000
#> [1] "#####################################"
#> [1] "# Final search has not yet been run #"
#> [1] "#####################################"
#> Phase, Search%, A-measure
#> [1] 1.000000 0.000000 1.896849
#> [1] 1.000000 10.000000 1.756136
#> [1] 1.00000 20.00000 1.69891
#> [1] 1.000000 30.000000 1.679198
#> [1] 1.000000 40.000000 1.656411
#> [1] 1.000000 50.000000 1.633088
#> [1] 1.000000 60.000000 1.620262
#> [1] 1.000000 70.000000 1.613022
#> [1] 1.000000 80.000000 1.600019
#> [1] 1.000000 90.000000 1.590032
#> [1] 1.000000 100.000000 1.590032
#> [1] 1.590032 1.590032 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
#> [9] 0.000000 0.000000
head(ilri_prep$design)
#> [1] NA